
Minor Assignment 2
By Ronald W. Ritchey
An assignment for SWE 781
Submitted on Sept 27th, 2007

Introduction
This assignment is meant to demonstrate how a program can use regular expressions
to perform comprehensive input validation. The specific requirement is to produce a
program that implements a telephone directory. This directory must allow new names
and phone numbers to be posted to the directory, allow entries to be deleted, and to
produce a listing of the directory contents. The program must only accept valid values
for all input. This includes properly validating names and telephone numbers as well as
all other input including menu selections. The assignment optionally included a
requirement to store and retrieve the directory to disk so that the contents of the
directory persists across executions of the program.

Design
This response to the requirements is a text-based application implemented in Java. It
implements four key behaviors: add directory entries, delete directory entries, list
directory entries, and long-term storage/retrieval. The following section describes how
the application is organized and highlights some of the unique features of the design.

High Level Design
The application is implemented using four main classes. Two classes are used to
validate, parse, and store names and telephone numbers. Another class is used to bind
names and telephones into a single directory entry. The last class implements the
behavior of the application including implementing the user interface and the
storage/retrieval of the directory from the disk. The high level diagram of the design is
shown in Figure 1.

Figure 1. High level design for MA2

The application implements four main commands.

Table 1. MA2 Commands
Command Accepts Action/Behavior

Add Name and
Telephone Number

Adds a new entry to the directory or if the
person already exists in the directory adds a
new telephone number to the persons entry

Delete Name or Telephone
Number

Deletes an entry from the directory or
remove a telephone number from an entry
with multiple telephone numbers

List N/A Produces a listing of People and telephone
numbers ordered by lastname, firstname
middle name

Exit N/A Writes encrypted directory to disk and exits

Validation System
The application relies upon the Telephone and Person classes to perform the major
validation functions. Upon instantiation, both classes apply regular expressions to the
constructor arguments to see if they represent valid input for the class. If the input looks
valid, the classes then parse the input. In the case of Person, the input is parsed into
first name, middle name, and last name. At present, suffixes and prefixes are not
support. In the case of Telephone, the input is parsed into country code, area code and
local number. Two exception classes have been created to record when invalid input is
received. These are InvalidPersonException and InvalidTelephoneException. Should
either the initial input format check fail, or the parsing fail Person and Telephone will
throw their respective exceptions to indicate that invalid input has been received and the
class can not be properly instantiated.

It should also be noted that once a valid Telephone or Person has been created, the
parsing they perform internally basically normalizes the data. This allows names and
telephone numbers to be compared based upon value even when the exact input format
is different. For instance if “Ron Ritchey” and “Ritchey, Ron” were used to instantiate
two new Person objects, the objects would compare as equals. Other benefit of this is
sort order which for Person is Last Name, First Name, Middle Name and for Telephone
is Country Code, Area Code, Local Number.

Regular expressions are relied upon heavily to perform validation of the telephone
numbers and names that the application accepts. The regular expressions and
examples of what the accept and reject are shown in tables 2 and 3.

Table 2. Regex used to validate Names
Regex for Name

namePattern = "[a-zA-Z]+('[a-zA-Z]+)?(-[a-zA-Z]+('[a-zA-Z]+)?)?"
FirstMidLastPattern = "^("+namePattern+"){0,2}"+na mePattern+"$"
LastMidFirstPattern = "^" + namePattern + ", ?(" + namePattern +")?" +

namePattern + "$"
FullNamePattern = "("+FirstMidLastPattern+")|("+Las tMidFirstPattern+")

Accepted
Value Results

Rejected

Ron Ritchey
Ritchey, Ron
Ritchey, Ron Wayne
O’Malley, John F.
John O’Malley-Smith
Cher

Ritchey, Ron
Ritchey, Ron
Ritchey, Ron Wayne
O’Malley, John F.
O’Malley-Smith, John
Cher

Ron O’’Henry Ron O’Henry-Smith-
Barnes
L33t Hacker
<Script>alert(“XSS”)</Script>
Brad Everett Samuel Smith
select * from users;

Table 3. Regex used to validate Telephone numbers

Regex for Telephone
telLocal = "[1-9][0-9 ,.\\-/]{4,8}$"
telAccess = "((011[\\-,./])|(00[\\-,./]?)|(\\+))"
telTrunk = "([01][\\-,./]?)?"
telCountry = "(([1-9][0-9]{0,2})|(\\([1-9][0-9]{0,2 }\\)))[,.\\-/]?"
telAreaCode = "\\([1-9][0-9]{0,5}\\)[,.\\-/]?"
FullTelPattern = "(("+telAccess + telCountry + telA reaCode + ")|(" +

telTrunk + telAreaCode + "))?" + telLocal

Accepted
Value Resulst

Rejected

12345
(703)111-2121
123-1234
+1(703)111-2121
+32 (21) 212-2324
1(703)123-1234
011 701 111 1234
12345.12345
011 1 703 111 1234

12345
(703) 111-2121
123-1234
+1 (703) 111-2121
+32 (21) 212-2324
(703) 123-1234
+701 111 1234
(12345) 12345
+1 (703) 111 1234

123
1/703/123/1234
Nr 102-123-1234
<script>alert(“XSS”)</script>
7031111234
+1234 (201) 123-1234
(001) 123-1234
+01 (703) 123-1234
(703) 123-1234 ext 204

There is still room for improvement in both of these regex systems. For names,
implementing suffix and prefixes would enable a broader set of names to be entered
(e.g. Ron Ritchey, Ph.D.)! Number is a harder challenge to extend. US phone numbers
are relatively well structured and would have made this assignment significantly easier
to deploy. International numbers and the standards commonly in use to write them vary
broadly depending upon the region of the world that they refer to. The variance occurs
not only country by country, but also at the city level. For instance, in Belgium local
numbers can contain between 6 and 7 digits depending upon the city. These variances
make the creation of a single regex expression difficult. The regex that has been
provided should except the majority of telephone number formats in use while providing
at least some valid method to accept all telephone numbers world wide. There are two
obvious opportunities for improvement though. First, the ability to record extensions

would be useful (e.g. (703) 123-1234 ext 204). The second is the ability to mark what
type of number it is (e.g. home, work, mobile, fax).
The remaining input validation for user input is for the menuing system. This routine
allows up to 100 characters to be entered but only considers the first character for
evaluation. This is compared against a list of valid characters. If a valid character is
entered it is returned to the calling function. If not, an InvalidInputException is thrown.

Storage
An additional feature of the system is secure storage of the directory entries on disk.
Upon start-up, the application checks to see if a directory has previously been written to
disk. This file, if present is an encrypted container that holds all of the directory entries
that existed when the application was last closed. The filename is currently hard coded
to “Assignment2.ser”. If this file is found an attempt is made to open it, decrypt it, and
then read it in. Note: the encryption/decryption system currently uses a key derived
from a hard coded string. To truly be secure, this password value should be read in at
runtime from a trusted source and then securely overwritten in memory after use.

Multiple validation steps take place as the file is read into memory. For one, the
decryption process implicitly verifies that the data has not been corrupted. Any changes
to the contents of the encrypted file will cause the decryption to fail. Next, the standard
Java serialization system checks to see if the objects being read are the objects that are
expected. Any discrepancies will cause an Exception to be thrown. In addition, as each
DirectoryEntry and its associated Person and Telephone objects are read in, localized
validation routines are executed by the serialization engine. This was accomplished by
implementing the Serializable routine readObject in Person and Telephone. Both
classes register a validation routine inside of readObject which is used to verify that the
class instance variables still meet the format requirements. Failure of the verification
will result in an InvalidPersonException or InvalidTelephoneException as appropriate for
the object being re-instantiated.

Instructions for Building and Running Application
The application was written using the Java J2SE SDK and requires at least version 1.5.
It consists of seven class files (shown in Table 4) that can be successfully compiled by
placing all of the files in a single directory and executing the following command.

javac *.java

Note: This will throw a warning recommend the use of Xlint. The specific warnings refer
to recommendations to provide Serialization IDs for each of the serializable classes and
a cast warning when reading in the TreeSet object from the object input stream. Both of
these warning types have been analyzed to verify that they represent no potential
negative impacts to the resulting application.

It should also be mentioned that the application requires the use of the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. If these are
not installed the application will immediately throw a Key Size exception on start up as

the application is using Triple DES encryption to protect the directory file. This exceeds
the allowable cryptographic strength for the default cryptographic policy files.

The application can be run using the following command.

java Assignment2

Note: if the directory file (Assignment2.ser) is corrupt, it will need to be deleted to enable
the application to start up.

Note: the logging system currently writes SEVERE level log entries to the console. This
can be changed by modifying the logging policy settings (see documentation for
java.util.logging.logger).

Appendix A. Source Code

Included in attached zip file “Ritchey, Ronald MA2.zip”

Appendix B

Test Harness
A test application was developed to verify the correct operation of the Person and Telephone
application. It is included in the zip file and is named test.java. It can be easily modified to test
the acceptance and rejection of a large number of test entries.

